
Final Project

Pac-Man on an FPGA

Tufts University, Fall 2021

ES 0004: Introduction to Digital Logic

Alec Plano, Evan Loconto,
Hannah Magoon, Zachary Goldstein

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

Contents

1 Overview 3

2 Technical Description 5
2.1 Programming Conventions . 5
2.2 VGA Display . 5
2.3 NES Controller . 5
2.4 Board Map and Sprite ROM . 6
2.5 Coin Map RAM . 6
2.6 Pac-Man . 7
2.7 Collision Logic . 7
2.8 Ghosts . 11

2.8.1 Ghost AI . 11
2.8.2 Clock-Cycle Confusion . 11
2.8.3 Pursuit and Scatter . 12

3 Results 13
3.1 VHDL Code . 13
3.2 Project Demo . 13
3.3 Remaining Bugs . 13

3.3.1 Win Condition . 13
3.3.2 Tunnel Glitches . 13
3.3.3 Orange Ghost Movement Glitch 14

3.4 Things we ran out of time for . 14

4 Reflection 15

5 Work Distribution 15

6 Acknowledgements 16

2

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

1 Overview

To begin this project, we divided the screen into a 40x30 grid of boxes. Each
of these boxes is a 16x16 pixel square. Throughout this report, we will use the
terms “block” and “pixel” location. “Block” location refers to a block number
on this grid. “Pixel” location refers to the row and column location of a specific
pixel. We stored the locations of Pac-Man and the ghosts as pixels so that their
motion across the board could be fluid, but all other information is stored as a
block to save space.

A rough sketch of the block diagram is included on the next page, but only the
important inputs/outputs are included to keep the image somewhat readable.
Although not drawn on the diagram, all entities will receive a clock that changes
as each new pixel and/or frame is drawn, and the non-memory entities will
receive a reset signal.

As shown in the diagram, most entities are nested inside the pattern generator.
A board map ROM is used as a look up table. Given a block address, its output
will indicate whether the block is a wall or a path. A RAM is used to store
whether a coin is located at the given pixel. As Pac-Man moves, ‘0’ is written
into the RAM at his current block location, meaning that the coin at his current
location is removed. Because the RAM is dual ported, the read input/output
can be used to simultaneously determine if a coin is in the block that the pattern
generator is currently drawing.

Pac-Man and the ghosts are each controlled by two entities. One of them sets
the desired movement direction, and the other moves the sprite once per frame.
Their sprites are stored in 16x16 pixel ROMS, which override the board map
pixel color when the pixel being drawn falls within the bounds of one of these
sprites. The game is lost when Pac-Man’s sprite occupies the same location
as one of the ghosts. More details on our implementation are provided in the
next section, but hopefully this overview makes the following block diagram
somewhat intelligible!

3

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

4

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

2 Technical Description

2.1 Programming Conventions

To maximize the readability and debug-ability of our codebase, we adopted the
following conventions early in development:

1. component input signals are appended with suffix “ i”

2. component output signals are appended with suffix “ o”

3. internal component signals do not have a suffix

4. std logic vectors are preferred over numeric types

5. general purpose components are preferred over case-specific components
to maximize code reuse

6. with rare exception, all non-blocking assignments must occur within pro-
cess blocks to ensure consistent signal propagation

7. the top-level module serves primarily to instantiate instances of sub-components.
Minimal logic is implemented directly within the top-level module

8. the PLL oscillator used to drive the VGA clock is used as the clock for
every other component. This ensures that all components and signals are
updated synchronously.

2.2 VGA Display

The VGA display is composed of three parts, the first is the PLL which is in
charge of creating a very accurate clock signal. This clock signal is then used by
the VGA module which counts each pixel across the screen and includes resting
time at the right and bottom of the screen. This module outputs the vertical
and horizontal sync signals to the VGA port and the pixel X and Y position
to the pattern generator. The final piece of the VGA display is the pattern
generator, which takes the X and Y pixel position and calculates which color
that pixel should be. This color data is then sent to the VGA port.

2.3 NES Controller

A NES controller is used to relay user input to the pattern generator. Because
the clock frequency required by the controller is slower than that of the PLL,
a counter was used to convert the pixel clock signal to a NES clock within
the specified range. With this clock signal, the NES entity was tasked with
sending and receiving information from the controller. Here, a latch signal was
needed to set the timing for the button inputs. When a button is pressed on
the controller, a signal is sent on a specified clock cycle after the latch input.

5

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

This signal is read into the entity and translated to an eight-bit shift register.
This information is fed into the Pac-Man movement direction logic entity.

2.4 Board Map and Sprite ROM

The sprite and board map ROMs were built from large lookup tables. The
board map ROM takes in a block number and outputs a ‘1’ if the block is a
wall, and a ‘0’ if it is a path.

The sprite ROMs take in a (pixel) address within the 16x16 pixel block, and
outputs a ‘1’ if the pixel is part of the sprite image, and a ‘0’ if it is part of the
background. In order to make these lookup tables we manually wrote out lists
of 1’s and 0’s. Then we used python to convert our array of bits into VHDL syn-
tax. From here, we created instances of the ROMs inside the pattern generator
to provide information about the current pixel being drawn.

2.5 Coin Map RAM

The RAM works similarly to the ROM: as the screen is being generated we
read from RAM and draw coins where it is necessary. On initialization of the
game, every spot in the board is given a coin, but the ones that are stored in
wall spaces are removed after the first frame is drawn. This leaves us with coins
in the open spaces only. Then as Pac-Man moves we feed his block location
into the write address port of the RAM, and write over the value stored in the
memory with a ‘0’. Regardless of its previous value, the block is converted to a
non-coin location. The code to initialize and write into the RAM is as follows:

signal coin_init : std_logic := ’0’;

if (rising_edge(clk_i)) then

if(coin_init = ’0’) then --initialize on first frame
--note: pixel_curr_block is the block # of the pixel being

drawn, and rom_out is the output of the board map ROM
w_addr <= std_logic_vector(pixel_curr_block);
w_enable <= ’1’;
w_data <= ’1’ when rom_out = ’0’ else ’0’;
if(pixel_curr_block = "10010101111") then

coin_init <= ’1’;
end if;

elsif(input_register_i(4)) then --reset signal
coin_init <= ’0’;

else
r_addr <= std_logic_vector(pixel_curr_block);
w_enable <= ’1’;
w_addr <= std_logic_vector(pacman_curr_block);
w_data <= ’0’;

end if;
end if;

6

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

2.6 Pac-Man

The Pac-Man sprite is controlled by two separate VHDL entities. The first one,
Pac-Man direction logic, takes in an input register from the NES controller and
turns it into a 2-bit direction instruction. This instruction is wired through a
signal in the pattern generator into the Pac-Man entity. Here, Pac-Man’s current
movement direction and the desired movement direction (from the controller
input) are tested using collision logic. At the beginning of each frame:

− If movement in the desired-movement direction is possible, Pac-Man is
moved and the desired-movement direction is set as the current-direction.

− Otherwise, if movement in the current-movement direction is possible,
Pac-Man’s location is moved by one pixel in that direction.

2.7 Collision Logic

The collision algorithm is implemented as an inter-operable component that is
instantiated for each moving game entity. This component takes as input: the
current location of the relevant entity, the current pixel being drawn to the
screen, and whether that drawn pixel is a wall pixel. The logic is implemented
with a set of 8 test pixels that lie immediately adjacent to key locations on
the entity bounding box. If one of these pixel is the color of a wall, then that
portion of the entity bounding box is adjacent to a wall.

A std logic vector (7 downto 0) contains these 8 adjacency signals. The loca-
tion of each test pixel is determined by the location of the relevant entity as
summarized below:

0. top left (xpos, ypos - 1)

1. top right (xpos + 15, ypos - 1)

2. bottom right (xpos + 15, ypos + 16)

3. bottom left (xpos, ypos + 16)

4. left bottom (xpos - 1, ypos + 15)

5. left top (xpos - 1, ypos)

6. right top (xpos + 16, ypos)

7. right bottom (xpos + 16, ypos + 51)

In the figure below, the red pixels represent the adjacency markers, the yellow
pixels represent an entity (Pac-Man), the blue pixels represent walls, and the
black pixels represent pathways.

7

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

Figure 2.1: The relative location of the 8 adjacency markers. In this example,
Pac-Man can move in any cardinal direction.

These signals are condensed into a std logic vector of four signals, can move o,
where each signal represents whether the entity can move in that direction:

0. can move up iff neither of the above adjacency markers are triggered

1. can move down iff neither of the below adjacency markers are triggered

2. can move left iff neither of the left adjacency markers are triggered

3. can move right iff neither of the right adjacency markers are triggered

To further demonstrate the implementation of this collision detection algorithm,
the next three figures illustrate other scenarios.

8

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

Figure 2.2: Pac-Man can move left or right

Figure 2.3: Pac-Man can move up, down, or left

9

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

Figure 2.4: Pac-Man can move left or right, but not up. The top right buffer
is triggered, preventing Pac-Man from moving into the wall.

The code is provided below to resolve any residual confusion:

if (rising_edge(clk_i)) then
collisions(0) <= is_pixel_wall_i when (col_i = (xpos_o)

and row_i = (ypos_o - 1)) else collisions(0); -- top
left

collisions(1) <= is_pixel_wall_i when (col_i = (xpos_o +
15) and row_i = (ypos_o - 1)) else collisions(1); --
top right

collisions(2) <= is_pixel_wall_i when (col_i = (xpos_o +
15) and row_i = (ypos_o + 16)) else collisions(2);
-- bottom right

collisions(3) <= is_pixel_wall_i when (col_i = (xpos_o)
and row_i = (ypos_o + 16)) else collisions(3); --
bottom left

collisions(4) <= is_pixel_wall_i when (col_i = (xpos_o -
1) and row_i = (ypos_o + 15)) else collisions(4); --
left bottom

collisions(5) <= is_pixel_wall_i when (col_i = (xpos_o -
1) and row_i = (ypos_o)) else collisions(5); --
left top

collisions(6) <= is_pixel_wall_i when (col_i = (xpos_o +
16) and row_i = (ypos_o)) else collisions(6); --
right top

collisions(7) <= is_pixel_wall_i when (col_i = (xpos_o +
16) and row_i = (ypos_o + 15)) else collisions(7);
-- right bottom

10

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

can_move_o <= (collisions(7) nor collisions(6)) & --right
(collisions(5) nor collisions(4)) & -- left
(collisions(3) nor collisions(2)) & -- bottom
(collisions(1) nor collisions(0)); -- top

end if;

2.8 Ghosts

The ghost sprites are controlled using a similar setup to Pac-Man.

2.8.1 Ghost AI

Although referring to the ghost direction logic as “artificial intelligence” is quite
generous, it nonetheless is the case that the core ghost AI always makes the
optimal direction decision at every intersection.

The ghost direction logic entity takes in the ghost’s current location (pixel),
the ghost’s target location (pixel), and a 4-bit collision vector that indicates
whether the ghost can move up/down/left/right. The ghost AI may choose the
current location of Pac-Man as its target location, or some other “home-base”
location that is provided during instantiation.

Note: The ghosts cannot reverse their direction. At any intersection, a ghost
may choose to continue in its current direction, turn left, or turn right. A
ghost will never leave an intersection from the same path that it used to
enter. This results in consistent and relatively bug-free ghost movement.
Critically, this prevents ghosts from getting stuck.

The direction entity compares the horizontal and vertical distances between the
ghost’s current location and its target location, and chooses a direction that
minimizes the larger of the two if possible. It determines whether it prefers
horizontal or vertical motion, and whether it prefers up over down and left over
right. Then, using a long chain of combinational logic, it determines which
of the allowed movement directions is optimal. There are thirty-two unique
configurations of intersections and preferred movement directions, so the logic
is implemented with nested conditionals.

2.8.2 Clock-Cycle Confusion

Although difficult to describe in a report, this logic implementation was rela-
tively straightforward. The only issue is that it takes an entire frame to deter-
mine the collisions around any particular sprite location. This is because the
collision logic we implemented does not have its own instantiation of the board
map ROM. Instead, it pulls from the one being used to draw the screen. To
determine whether a given pixel is a wall or a path, the collision detector waits

11

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

for the pattern generator to draw the pixel and stores its value. This means that
by the time that the collisions around a given sprite location are calculated, the
frame has been drawn and the sprite needs to be moved. This left us with an
off-by-one clock cycle error.

At first, we tried to resolve this using the dead time between frames, but in-
troducing new clocks complicated things, and the ghosts did not always follow
the shortest path to Pac-Man. To resolve this issue, we calculated collisions in
the 4 blocks around the ghost’s current location. Then, when the ghost’s loca-
tion was updated, the correct collision logic vector could be selected, giving the
movement logic entity an entire frame to calculate the optimal ghost direction.
This resolved the issue, and the ghosts were able to effectively move their target
locations.

2.8.3 Pursuit and Scatter

To prevent ghosts from lining up in a row and following Pac-Man, we alternated
between setting their target location to Pac-Man and to one of the four corners
on the board. At any given time, two ghosts are sent towards Pac-Man, and
the other two are sent to their home corners. A ghost is in “pusuit” mode when
its target position is Pac-Man’s position, and “scatter” mode when its target
position is its home-base corner. This is very similar to the ghost AI behavior
in the real Pac-Man game!

12

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

3 Results

3.1 VHDL Code

https://github.com/Evan1oconto/Pacman-FPGA

3.2 Project Demo

https://youtu.be/r30P7GXCb5I

3.3 Remaining Bugs

3.3.1 Win Condition

In its current state, the game is unable to determine when all of the coins have
been eaten. This means that although a player can lose the game, they can
never truly win. Implementing a “win” condition should be fairly straightfor-
ward. To do so, we could create a signal in the pattern generator and set it to
‘0’ at the start of each frame. If a coin is drawn to the board, the signal would
be flipped to a ‘1’. If the signal is still ‘0’ at the end of the frame, then there
are no coins left on the board. This means that Pac-Man has won the game.

We faced a number of bugs while implementing this, and the game would be
‘won’ at seemingly random times during play. Even though the concept de-
scribed above is fairly simple, implementation was complicated by the fact that
one signal cannot be driven by two different process blocks. Because we ran out
of time to figure out the source of these bugs, the feature had been commented
out of the final version of the code.

3.3.2 Tunnel Glitches

We still have two small bugs associated with the tunneling feature of the game.
The first is that when Pac-Man goes through the tunnel from the left side of
the board to the right, he misses the right-most coin in the tunnel. However
when he enters the tunnel from the right side of the board, he gathers all of the
coins as expected.

The other bug associated with the tunnel has to do with the ghosts. Despite all
the ghosts logic being identical (with only small variations on target location),
two of the ghosts have a tendency to glitch inside the tunnel. By this we mean
that the ghost will be going towards the tunnel, but right before crossing to the
other side of the board, the ghost’s direction reverses by 180 degrees. Because
ghosts should never completely reverse direction, this may due to a clock cycle
error introduced when we hard-coded teleportation through the tunnel.

These two bugs are the most straightforward to fix, but since they have al-
most no impact on game-play, they are low on our priority list.

13

https://github.com/Evan1oconto/Pacman-FPGA
https://youtu.be/r30P7GXCb5I

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

3.3.3 Orange Ghost Movement Glitch

While coding and testing this game, we noticed that the orange ghost occa-
sionally gets stuck in corners. We observed this happening on four separate
occasions. Because this error happened so infrequently (and could not be re-
peated, even when we had Pac-Man follow the same path), we are unsure of
why this is occurring. It is interesting to note that in the pattern generator
entity, the orange ghost’s combinational logic is listed last.

The location in the ghost’s movement logic that corresponds to the decision
being made at the time of one of these glitches was marked with a comment,
but there do not appear to be any problems with the code. The fact that the
ghost is able to make the correct movement direction the vast majority of the
time leads us to believe that this error is not due to faulty logic. We are unsure
how to debug this, and believe that it may be a sequential timing error? Intro-
ducing additional Pac-Man lives makes this issue worse (it was only observed
once without the additional sequential logic). It’s also worthwhile noting that
while compiling the code, we get a warning about clock timing.

3.4 Things we ran out of time for

Given more time on this project, we would:

− Clean up the code and add comments to make it readable

− Attempt to resolve the bugs described above

− In real Pac-Man, each ghost is sent towards a different target location.
Given more time, we would read about the ghost behavior and write some
combinational logic in the pattern generator to give the ghosts different
objectives

− Create board ROMS to display when someone wins/loses the game (in-
stead of coloring the screen green/red)

− Animate the pacman sprite to make it look like he’s eating the coins :-)

− Add cherries to the game. Although this sounds difficult, it wouldn’t
require too much new code/logic. We would create another RAM, store
the ghost’s state in a signal, and simply change the ghost target position
(and maybe speed) to have them run away from pacman. We would also
have to adjust the end of game logic slightly (so that pacman could eat a
ghost without dying), but this would be relatively straightforward

− We wanted to have the ghosts start in the center square at the beginning
of the game, and move out after a set number of clock cycles. This would
be a bit tricky to implement given the structure of our code, but we could

14

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

fake it by drawing a ghost sprite in the center box, and waiting a given
interval of time before placing the real ghost entity on the map

4 Reflection

This project went fairly smoothly. Our group worked well together, and al-
though we got stuck at a couple of points, we were able to resolve the majority
of our bugs. The pace that we worked on this project was a bit erratic, but it
actually helped us to avoid the stressful time crunch that some of our friends
had to deal with. Although it would have been nice to have more time to work
on this, it probably would have been at the expense of our other finals. To put
things simply, we genuinely had fun with this project and we would not change
much if we were to do it over again. That being said, if I knew we were going
to be in the lab so late I would have ordered pizza.

5 Work Distribution

It’s difficult to describe individual contributions to the project because we met
up and worked together rather than breaking the project into small subtasks.
Furthermore, we had to continuously modify existing code to mesh with new
additions to the project. This means that entities were passed around and
rewritten multiple times. Nevertheless, a rough description of our contributions
is outlined below.

Contribution Team Members
Circuit Alec, Zach, Evan, Hannah

VGA Display Alec, Zach
NES Controller Evan, Zach
Board Map ROM Alec, Hannah
Sprite ROMs Alec, Evan

Coin Map RAM Alec, Hannah
Collision Logic Zach, Evan, Hannah

Pac-Man Zach
Ghost AI Zach, Hannah

Ghost Clock-Syncing Hannah

15

ES 0004: Introduction to Digital Logic
Tufts University, Fall 2021 Final Project

6 Acknowledgements

We would like to give a quick shoutout to all of our TAs for their help and
support (especially John, who explained a better way to implement collision
logic and suggested that we learn to use variables). We would also like to thank
for Professor Bell for taking the time to talk through the design of this project,
helping us debug, and for telling us about the secret lab room down the hall.

16

	Overview
	Technical Description
	Programming Conventions
	VGA Display
	NES Controller
	Board Map and Sprite ROM
	Coin Map RAM
	Pac-Man
	Collision Logic
	Ghosts
	Ghost AI
	Clock-Cycle Confusion
	Pursuit and Scatter

	Results
	VHDL Code
	Project Demo
	Remaining Bugs
	Win Condition
	Tunnel Glitches
	Orange Ghost Movement Glitch

	Things we ran out of time for

	Reflection
	Work Distribution
	Acknowledgements

